Find the equation of the hyperbola where foci are $(0,\,±12)$ and the length of the latus rectum is $36.$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

since foci are $(0,\,±12)$ , it follows that $c=12$

Length of the latus rectum $=\frac{2 b^{2}}{a}=36$ or $b^{2}=18 a$

Therefore $c^{2}=a^{2}+b^{2}$; gives

          $144=a^{2}+18 a$

i.e.     $a^{2}+18 a-144=0$

So     $a=-24,6$

since $a$ cannot be negative, we take $a=6$ and so $b^{2}=108$. 

Therefore, the equation of the required hyperbola is $\frac{y^{2}}{36}-\frac{x^{2}}{108}=1,$ i.e., $3 y^{2}-x^{2}=108$

Similar Questions

The equation of the normal to the hyperbola $\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{9} = 1$ at $( - 4,\;0)$ is

A tangent to a hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ intercepts a length of unity from each of the co-ordinate axes, then the point $(a, b)$ lies on the rectangular hyperbola

The one which does not represent a hyperbola is

Let $e_{1}$ and $e_{2}$ be the eccentricities of the ellipse, $\frac{x^{2}}{25}+\frac{y^{2}}{b^{2}}=1(b<5)$ and the hyperbola $\frac{ x ^{2}}{16}-\frac{ y ^{2}}{ b ^{2}}=1$ respectively satisfying $e _{1} e _{2}=1 .$ If $\alpha$ and $\beta$ are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair $(\alpha, \beta)$ is equal to

  • [JEE MAIN 2020]

Equation of the normal to the hyperbola $\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{{16}} = 1$ perpendicular to the line $2x + y = 1$ is